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The first and the second boundary value problems 

&l i)“U a51 
- ~ - 70 

ax2 -- dy? dl’ 
(1) 

for the semi-plane y > 0 are well explored [ 1 1. The mixed boundary value 

problem is somewhat more difficult: 

u (I, 1) = 0 for 1.~ I 
whgn ~-0 (2) 

au 

Here a( a. t) is a bounded function. 

For simplicity, the initial conditions are assumed equal to zero: 

u=au/al==o at l--=11 

If UC%, y, t) is taken as the displacement potential of an elastic 

fluid, the boundary conditions may have the following meaning: a punch 

of assigned form a(z. t) is pressed into the boundary of a semi-plane in 

the interval - 1 < I < 1. The remaining part of the boundary is free of 

pressure. 

The purpose of this paper is a construction of the values of the func- 

tions U(X, t) on the boundary (y = 0) for 1 x 1 < 1 and W(X, t) for 1 x 1 > 1. 

When these are known, the function U(I, y, t) can be constructed in the 

entire semi-plane y > 0. t > 0. 

As known, the functions U(X, t) and O(X, t) are related by the ex- 

pression [ 1 1 
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The domain of integration is shown in Fig. 1. 

Fig. 1. 

The following auxiliary problem is discussed first: 

The function W(X, t) is to be determined, using (3) for x > 0, t > 0, 

under condition that 

W(I, t)=a(~, t) for I<(), U(Z, t)-0 for s>O (4) 

The relationship (3) for the determination of U(X, t) gives for x > 0 

the nonhomogeneous integral equation of the first kind 

A solution is to be found, which would be limited for x > 0, t >/ 0 

and could be integrated with respect to 

any t. 

Multiply both parts of this equation 

to t from zero to Infinity, taking into 

sults in: 
cc. 
I’ ; 

x in every ffnite interval for 

by c-p: and integrate with respect 

account that Re p > 0. This re- 

where KC,(t) is a YacDonald function. 

co ClY (7) 

3 (I, P) = 
5 

u: (I, t) e-plrlf for I > 0, +(I, p)= a(~, l)emP’dl for r<O 
s 

I, 0 

The integral equation (6) is to be solved by Fok’s method [ 2 I. Both 

parts of (6) are multiplied by c*“, where Re 8 > 0. and integrated with 

respect to x from zero to infinity. Calculations analogous to those in 
paper [ 2 1 result in 
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1 +icn -s ~((?,P)dr) 
hi _i,~P*(__s)+F(s. p)=O (O<Res<Rep) (Sj 

where 
0-J 

a) (.F, P) = s ‘p (5, p) e-S52E 
0 

my) 

F (s, P) --- \ 
y (i, P) di 

;, (C $- s) I’&_ ’ ws, P) = \ es% (4, 14 dS 
-07 

The function 0(x, t) must satisfy the Dirichlet condition. Then y(r, p) 

will be a regular function of a complex variable s for Re,s > 0. Ob- 
viously, then F(r, p) will be also a regular function for Re L > 0. It 
can be expressed by the Cauchy integral 

F (s, p) = - & 5 F (7, P) drl 
q - s 

-ico 

Expression (8) can be rewritten as 

where 

H @I* P) dr, __ (, 
q--s (0 < Re s < Hc p) 

-im 

H (~9 P) = Fpg + F (s, P) 

(I(‘) 

(11) 

According to our remarks about the function v(x, tl, the function 
@(a, p) must be regular for Re s > 0. and must also approach zero as s 
tends to infinity. The function F(s, p) is regular for Re s > 0. as 
mentioned above. Repeating the reasoning of paper [Z I, we conclude from 
(10) that the function H(r, p) must be regular for Re s < Re p. 

Thus, the following problem leads to the determination of (PCS, p): 

Find a function (PCS, p). regular for Re s > 0 and approaching zero 
aa 8 tends to infinity, such that the function B(s, p) is regular for 
Re s < Re p. 

It is not difficult to verify that a solution of this problem is 
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A solution of the equation (5) is obtained after Inverse 

t ion: 

W(I, t) =O for z>t 
t 

1 s T d-c 
?(‘(2, I) = -- ; n (z -- T, t T) ;-- 1 7 for r< t 

Substituting the value f&s, p) from (12) into (11 ) and performing with 

(11) similar transformations in reverse order, we WI 11 show that the 

function V(X, t) from (13) is Indeed the solution of the integral equa- 

tion (5). Uniqueness of solution of the equation (5) , on our assumptions, 

can easily be shown if we Investigate the homogeneous equation in a 

similar way. 

transforma- 

(13) 

Substituting the value V(X, t) into equation (31. we obtain the ex- 

pression U(X, t) for * < 0. 

The auxiliary problem Is thus solved. Let us now show how the functions 

WC%, t) for 1 I 1 > 1 and a(~, t) for 1 x 1 < 1 can be determined for any 

instant of time, using the auxiliary problem, and the formula (3) for the 

boundary conditions (2). Let us investigate the plane (xt). 

In the domains SOi and SO2 the vanishing initial values give v = 0. 
In the domains Sll and S12 the function v(x, t) is known from the solu- 

tion of our auxiliary problem. The value of U(X, t) in the domain PO,, is 

given by the formula (31, and In the domains Pll and Pi2 by the same 

formula, since the value of v in the domains Sii and S12 is known. In the 

domains S2i and S22 the function W(X, t) again results from the solution 
of the auxiliary problem, since the value a(~, t) in the domains POO, 

p1l and P12 is already known (Fig. 2). 

Fig. 2. 
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The value U(X, t) in the domains PO1, Pql and Pz2 can also be con- 

structed, taking into account the already known values of w(x, t). Con- 

tinuing this process further we can construct the values of w(x, t) for 

1 x 1 > 1 and U(X, t) for 1 x 1 < 1 for any instant of time. as required. 

A solution is thus obtained in principle. 

Several remarks are due with regard to the features of this solution. 

Let us study the solution of the auxiliary problem. It follows from the 

formula (13) that for x = t on the front of the propagating wave 

&I, a11 
1,: Y-& zzz X’O 

In the vicinity of the point L = 0 we have for a(x, t) = 1 

In the vicinity of L = 0 the function V(X, t) approaches infinity, as 

l/ dz. It is noteworthy that the function m(z, t) has this property for 

all a(r, t). except those for which 
1 

s a(--, *-.,z=o 
VT 0 

(14) 

for any t. It is not difficult to verify the fact that the function 

4(x, t) will satisfy the condition (14) if the value of au/d, is taken 

Instead of a(x, t) at y = 0 and x < 0, corresponding to 

u (2, 2) = b (2, t) for z < 0, u(z,t)=O forz>O 

b=O, g=O at x=0 

for example, b(x, t) = c(t)**. This a(x, t) will satisfy condition (14). 

As known 13 I. an analogous mixed problem for Laplace’s equation 

leads to the values of du/dy at y = 0, which have the same features as 

here, at points where the type of boundary conditions changes. There will 

be no singularity if the relatlonship of type (14) is fulfilled for the 

boundary value. 

The following problem may be investigated analogously: at 8 = 0 

Let us investigate the elastic semi-space y > 0. 

If U(L. Y, t) is the displacement in transverse oscillations of the 
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elastic semi-space, polarized parallel to the z-axis, then du/dy = T x,/p, 

where r zy is the shear stress, p is the shear modulus. 

Boundary conditions (15) can be interpreted in this way: displacements 

u = a(r, t) are given at the boundary of the elastic semi-space y >/ 0. in 

a strip 1 L 1 < 1; these displacements are parallel to the z-axis, inde- 

pendent from the z coordinate; the remaining part of the boundary 1 x 1 > 1 

is stress free. Then, as known, the problem becomes two-dimensional, and 

the system of equations representing the vibrations of elastic space de- 

generates Into one wave equation for the component u. which is parallel 

to the z-axis. 

Fig. 3. Fig. 4. 

The solution of the auxiliary problem with the boundary conditions at 

Y’ 0 

will be 

Here 

au 
u(z, t) =a(x, f) fo_r X>O, -=W=O for X<O ay - 

and the domains of integration ul, u2, u3 are shown in Figs. 3 and 4. 

Using the formula which expresses au/ay = IV at y = 0 in terms of u at 

y = 0, and which was derived in [ 1 I, 
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by similar transformations it is possible to construct W(X, t) for 

1 L 1 < 1 and u(x, t) for 1 x 1 > 1. The domain of integration for u is shown 

in Fig. 1. 

It is important to mention that the two-dimensional case of the mixed 
boundary value problem (a punch without friction) can be investigated In 

a similar ray for dynamic equations of theory of elasticity. 
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